

IP-Level Testing of SPI Modules for Fabless SoCs with Open

POWER Processor Cores

 Mr.B.C.Vengamuni,

Assistant Professor (Adhoc) JNTUA College of Engineering Ananthapuramu, Ananthapuramu, India

Abstract: The Serial-Peripheral Interface (SPI) protocol is one of the most widely used bus protocols for connecting processors to peripheral

devices with low/medium at a transmission speeds. SPI architecture is used to communicate between multiple peripherals and the processor in a

SoC application. The slave is subject to the master's power. The slave is represented by a sensor, monitor, or memory chip. A reusable logic or

functionality unit, cell, or layout design that can be used in numerous chip designs is referred to as an intellectual property (IP) in the context of

VLSI. These IPs are typically created with the intention of licensing them to other vendors. This IP verification of the SPI controller is done by

writing test benches in System Verilog and UVM. This paper’s aim is to verify Intellectual Property (IP) blocks and driver development of SPI

controller for Open-Power processor A2O core-based fabless SoC connected through AXI4 interface. The methodology used for verifying is to

develop Test benches in System Verilog and use them for Verification by using software like ModelSim Questa® and Vivado design suite-

Xilinx®.

Index Terms- System Verilog, UVM,Testbench,SoC,SPI,AXI4.

I. INTRODUCTION

Verification is the critical stage in the creation of a design. Nearly 80% of time in the design cycle is spent on verification.

Technology requires a rapid and trustworthy verification mechanism in order to narrow the gap between supply and product

demand. We are forced to create bigger, more capable, and more sophisticated designs by technological demands. High

complexity designs are more prone to errors. Traditional verification techniques do not work well with them. The most common

methodology for verifying intricate VLSI designs is UVM. UVM uses automation mechanisms including the production of

random stimuli and Data and automation aspects like read, write, compare and copy are addressed by transaction-level modeling

(TLM). UVM is an Accellera standard and includes numerous tool support, in contrast to other HDL languages. As AXI4 is a

master and SPI is a slave, the development of a test bench for the ARM Advanced Microcontroller Bus Architecture (AMBA)

AXI4 bus to SPI controller is to verify transactions between them. The authentication of write/read activities over the Bridge is

justified by UVM verification. Verifying bridge transitions with UVM is a crucial goal, and test bench acts as the master for the

AXI4 interface, which provides the required input signals. As a result, SPI interface performs as a slave, created to give

appropriate signals to DUT, Which uses SPI along with AXI master. Accordingly, AXI interface controls the AXI master's

reaction. The addition of a self-checking mechanism in the testbench was driven by the assertions at the interface for the

integration of reusable environment into the tolerance detection approach. When a necessary condition (or conditions) is (are)

broken, assertions identify errors as well as run- time fatal errors. The use of two different interfaces in place of one, especially for

bridge nodes with independent clock mechanisms, allows synchronization to absorb the unique qualities of the bridge more

quickly. The provided testbench supports reusable environment and works with all bridge transitions.

II. GOALS OF THE EXPERIMENT

Following are main goals of the experiment:

1) Creation of an environment for bridge protocol verification Included is a comprehensive Design under Test (DUT) scenarios

assessment with the necessary set of cover points.

2) Executing a large number of test cases just on testbench while using a self-checking approach to guarantee that UVM is

running without any fatal errors, which makes debugging easier.

3) Theuseof2 agents to track data movement from SPI to AXI4 Bridge in the reusable environment.

4) Complete functionality coverage to ensure that the testbench receives functional coverage. Coverage metrics go in to detail

about the design elements that are active during simulation.

5) Carrying out the necessary required assertions for assertion based verification (ABV). The objective is to stop any significant
bugs from surviving through the SOC or ASIC development stage.

6) Creating a testbench to generate appropriate random stimuli for the detection of design faults that are currently active.

III. UVMTESTBENCHARCHITECTURE

A. UVM Environment

When a DUV is get replaced, the UVM environment, also known as the Universal Verification Component (UVC), is designed to

be reused. As the UVC unifies Agents, Driver, Sequencer, Monitor, Coverage checkers and Configuration, and independently for

SPI and AXI environments that are compatible with the UVM semantics and base class. Fig. 1: The test bench architecture [1].

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 23 Issue 09, SEP, 2023

ISSN No: 2250-3676 www.ijesat.com Page 670 of 676

B. Protocol Universal Verification Components

The UVC for the proposed architecture of the AXI4 to SPI Controller are as follows:

Fig.1.ProposedArchitectureofUVMtestbench

1) SPI Sequencer: To deliver the randomized sequence item to the driver for the next transition of data using Transition level

modeling, the sequencer is parameterized per sequence item (TLM). SPI slave receives input from the output of the AXI master

signal while the sequencer creates random transactions for the slave SPI DUT [1].

2) AXI Sequencer: To deliver the randomized sequence items to the driver accompanying TLM, the AXI_sequencer is

parameterized by seq item. AXI master receives input from SPI slave's output, and an AXI sequencer creates random transactions

for AXI master and DUT.

3) Driver: To drive pin wiggles of the DUT via the interface, the driver transforms transition level data top in level data. Drivers

behave differently for SPI and AXI in each scenario. The bridge's SPI driver involves the SPI.

4) Monitor: By re-converting the abstract data through the analysis port and reporting the abstract transition, the monitor puts the
abstract data back together. The conversion of pin level data to transaction level is carried out by the monitor as it monitors the

data coming from the interface.

5) Agent: The term "agent" refers to a Combination of sequencer, monitor and driver.

6) Interface: Interface acts as a conduit between the environment and the DUT and includes logical requirements such as self-

checking mechanisms. For interaction, it may additionally include bus functional models (BFM). There are two distinct interfaces

for SPI and AXI in the suggested architecture, which is depicted in Fig. 1. Both interfaces function separately.

7) Coverage checker: For sampling and modification of cover groups meant for protocol function coverage, the coverage

checker serves as an optional object. It is a component of the UVM environment not a part of the agent.

C. Coverage Metrics

Functional coverage matrices are used by the DUT during constraint random verification to determine whether the functionality

and requirements have been met in accordance with the test plan or not. Additionally, it completes by thoroughly examining the

designmodel'scodeusingmetricsforcodecoverage.Thetermsforcontrollabilityandobservabilityarealsocovered.Controllability

Is the ability to alter a design's code, functional model, or design structure by creating different random stimuli or virtual

sequences via input pins. In contrast, observability is the ability to track how designs, codes, or model structures affect output.

D. UVM sequence Arbitration

One sequence is easy to handle, but when numerous sequences are occurring at once, arbitration is necessary to stop a race

condition known as Sequence arbitration. In this study, we employ the uvm sequence arb FIFO default arbitration technique.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 23 Issue 09, SEP, 2023

ISSN No: 2250-3676 www.ijesat.com Page 671 of 676

E. Virtual sequence

It's essential to employ virtual sequence when using 2interfaces and 2agents. The top-level sequence for DUT configurations,

which is the virtual sequence, correlates with the intermediate-level sub-sequences. Low- level or rudimentary sequences are

handled by sub-sequences. The creation of transactions that are transmitted to the driver and the gathering of monitor responses

are done by these low-level sequences. Virtual sequencer, which is an extension of uvm sequencer, passes virtual sequence. The

agent's handle is transferred to the virtual sequencer in accordance with the rules.

IV. PHASESOFUVM

The verification methodology used is UVM. UVM introduces phases to establish the necessary functional routes and consistency

in flow. All UVM modules currently in use perform these stages in the same hierarchical, top-to-bottom order. As seen in Fig. 2,

the categorization provides three phases for UVM operation.

A. Build phase:

The testbench is connected and configured during this phase of construction with the intention of using a specific connection to

execute the directional verification process. Build phases are of the three sub divided phases of build phase, connect phase, and

end of elaboration phase.

B. Run time phase:

The intermediate stage during which random stimulus creation and simulation occur. There are 13 sub-stages in all in the runtime

phases.

Fig.2.ClassificationofUVMphases

C. Clean up phase:

The final phase of the UVM phasing mechanism is in charge of gathering and reporting the effects of the various test cases

'results. The cleanup phase is divided into four sections: extract phase, check phase, report phase, and final phase.

V. WORKING OF TESTBENCH

According to Fig3 and 4, the Testbench is divided in to two top modules, HVL and HDL top. The main point of employing two

top modules is to move the interface and RTL into one top module and the synthesizable portion of the testbench into the other.

The un synthesizable portion is moved into the HVL TOP, and the structure is given the label HDL TOP. Because it makes it

possible to conducting their tests rapidly. Depending on the mode of operation, this specific test bed can be utilized for both

simulation and emulation. The transactions flow from the master virtual sequence and slave virtual sequence on to the axi4 and

SPI IF through the BFM Proxy and BFM, and the HVL TOP design is untimed. It also receives data from the monitor BFM and

uses it to do checks using the scoreboard and coverage.

The design portion of HDL TOP is timed and synthesizable, and it also produces the clock and reset signals. In HDL TOP, there

are Bus Functional Models (BFMs), which are synthesizable components of the drivers and monitors. BFMs also contain back

pointers to their proxies, allowing them to call non-blocking methods that are specified in the proxies.

Tasks and operations that the driver and monitor proxy in the HVL calls within the drivers and monitors. Data is sent between the

HDL TOP and HVL TOP in this way.

Since the clock is produced by the HDLTOP inside the emulator, HDL and HVL use transaction-based communication to provide

information-rich transactions, which enables the emulator to operate at full speed.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 23 Issue 09, SEP, 2023

ISSN No: 2250-3676 www.ijesat.com Page 672 of 676

Fig.3.HDLTop

Fig.4.HVLTop

The run test ("test name") method in top is used to start the entire tb_component set when a test is run.

VI. RESULTS AND DISCUSSIONS

A. Debugging tips:

As design complexity keeps rising, new problems with verification and debugging are emerging. Fortunately, fresh approaches

and techniques (like UVM) have been developed to deal with rising design complexity. Although UVM adoption has the potential

to increase productivity, there are more recent debugging issues that are unique to UVM that need to be resolved.

Here basic_write_read_reg_test was used as an example test case to demonstrate the AXI4 protocol's debugging flow below, and

UVM HIGH verbosity was utilized to run all of the information.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 23 Issue 09, SEP, 2023

ISSN No: 2250-3676 www.ijesat.com Page 673 of 676

B. Debug Flow:

Fig.5.DebugFlow

To get the debug flow shown in fig. 5, first access the log file that is located in the test folder that has been run. Then, follow the

steps following.

C. Transaction values:

1. Master Transaction values:

Once the configuration variables and transfer size are accurate, verify whether the data will be communicated by the master tx

class or the slave tx class.

Fig.6.Mastertxvalues

First, look to see if the transaction is idle. (Ex: psel x here equals 0 and pen able is1)When the psel x becomes high after the

present is high based on the p clk edge, the data is sampled on the same clock edge.

2. Slave Transaction values:

Fig.7.Slavetxvalues

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 23 Issue 09, SEP, 2023

ISSN No: 2250-3676 www.ijesat.com Page 674 of 676

Data is transferred to master or slave BFMs after randomization. Depending on the configurations of the master, the master driver

BFM will drive the aw addr, aw valid, aw ready, aw data signals and sample the aw addr, aw valid, aw ready, aw data; likewise,

the slave driver BFM will drive the aw addr, aw valid, aw ready, aw data signal and sample the aw addr, aw valid, aw data.

D. Monitor values:

1. Master Monitor values:

Fig.8.MasterMonitorvalues

The master driver BFM will print all of the signals that the master has driven, as well as sampled data. Both the master and the

slave driver BFM will print every signal that the slave has driven as well as any sampled data.

The final data for both the master and slave BFMs must be identical. The monitor will capture the data once it has been driven or

sampled, and it will publish the driven and sampled data in the request form or at the transaction level.

2. Slave Monitor values:

Fig.9.Slave Monitor values

E. Score board Checks:

Finally, score board checks are used to compare the aw addr and data width data between the master and slave sides.

Fig.10.Scoreboardvalues

F. Wave forms Obtained:

The data is transferred fromAXI4 master bus to SPI slave controller and the writing in spi slave done through WDATA signal

showed in fig 6.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 23 Issue 09, SEP, 2023

ISSN No: 2250-3676 www.ijesat.com Page 675 of 676

Fig.11.Wave 1

Once the WDATA is high WREADY and WVALID signals goes high. After a successful WVALID signal we can say data is

successfully transferred showed in fig 7.

Fig.12.Wave2

VII. CONCLUSION AND FUTURESCOPE

This work developed, simulated and verified of AXI4 SPI Controller which utilized A2O processor based fabless SoC in SV and

UVM using QuestaSim. The controller achieves the operational features. Using AXI4, this suggested design could enhance data

transfer efficiency. In Xilinx Vivado, the design is developed and interfaced with A20, while Mentor Questa is used for

simulation. This controller support high speed and short distance communication devices with the help of the clocking schemes.

The design can be extended to QSPI and DSPI for the double data rate and quad data rate for single clock to get the operations

faster.

REFERENCES

[1] Gaurav Sharma, Lava Bhargava, Vinod Kumar “Self-Assertive Generic UVM Testbench for advanced verification of bridge

 IP’s”, IEEE, 2017.

[2] MartinBarnasconi, ManfredDietrich, KarstenEinwich, andThiloVortler”UVM-SystemC-AMSFrameworkforSystem-Level

 Verification and Validation of Automotive Use Cases” IEEE Design & Test, 2015.

[3] JFrancesconi. JARodriguez, MPJulian”UVMBasedTestbenchArchitectureforUnitVerification,”2014Argentina Conference on
 Micro Nano electronics Technology and Applications (EAMTA), July 2014.

[4] H Y Yang. ”Highly automated and efficient simulation environment with UVM,” IEEE VLSI Design, Automation and Test

 (VLSI-DAT), 2014.

[5] GabeMoretti.” Accellera Support for ESLVerification and Stimulus Reused”, IEEE Design&Test2016.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 23 Issue 09, SEP, 2023

ISSN No: 2250-3676 www.ijesat.com Page 676 of 676

	I. INTRODUCTION
	II. GOALS OF THE EXPERIMENT
	III. UVMTESTBENCHARCHITECTURE
	A. UVM Environment
	B. Protocol Universal Verification Components
	C. Coverage Metrics
	D. UVM sequence Arbitration
	E. Virtual sequence

	IV. PHASESOFUVM
	A. Build phase:
	B. Run time phase:
	C. Clean up phase:

	V. WORKING OF TESTBENCH
	VI. RESULTS AND DISCUSSIONS
	A. Debugging tips:
	B. Debug Flow:
	C. Transaction values:
	2. Slave Transaction values:
	D. Monitor values:
	2. Slave Monitor values:
	E. Score board Checks:
	F. Wave forms Obtained:

	VII. CONCLUSION AND FUTURESCOPE
	REFERENCES

